Efficient Haplotype Inference with Answer Set Programming

Esra Erdem and Ferhan Türe Sabancı University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Single Nucleotide Polymorphism (SNP) is a DNA sequence variation at the single nucleotide level between one individual and another.

- Single Nucleotide Polymorphism (SNP) is a DNA sequence variation at the single nucleotide level between one individual and another.
- SNPs can be used
 - to diagnose diseases earlier,
 - to discover patterns of inheritance that affect health, and
 - to avoid giving drugs to patients likely to have side effects.

(日) (日) (日) (日) (日) (日) (日)

- Single Nucleotide Polymorphism (SNP) is a DNA sequence variation at the single nucleotide level between one individual and another.
- SNPs can be used
 - to diagnose diseases earlier,
 - to discover patterns of inheritance that affect health, and
 - to avoid giving drugs to patients likely to have side effects.

(ロ) (同) (三) (三) (三) (三) (○) (○)

 Haplotype inference is to infer haplotypes (SNPs of maternal and paternal chromosomes), from genotypes (mixed SNP data).

Chromosome, paternal: ataggtccCtatttccaggcgcCgtatacttcgacgggActata Chromosome, maternal: ataggtccGtatttccaggcgcCgtatacttcgacgggTctata

Genotype \rightarrow

G/C C/C A/T

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Genotype \rightarrow	G/C	C/C	A/T
Haplotype 1 \rightarrow	С	С	А
Haplotype 2 \rightarrow	G	С	Т
or			
Haplotype 1 →	G	С	А
Haplotype 2 →	С	С	Т

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Haplotype Inference by Pure Parsimony (HIPP)

- HIPP: Given a set of genotypes, find the minimal set of haplotypes that explain each of the genotypes.
- The decision version of HIPP (i.e., deciding that a set of k haplotypes that explain the given genotypes exists) is NP-hard (Gusfield, 2003).

(日) (日) (日) (日) (日) (日) (日)

Answer Set Programming (ASP)

- Theoretical basis: answer set semantics (Gelfond & Lifschitz, 1988)
- A method to solve combinatorial search problems (Marek & Truszczynski, 1999; Niemelae, 1999; Lifschitz, 1999)
- Systems for computing answer sets:
 - Smodels (Helsinki University of Technology, 1996)

(日) (日) (日) (日) (日) (日) (日)

- Dlv (Vienna University of Technology, 1997)
- Cmodels (University of Texas at Austin, 2002)
- Pbmodels (University of Kentucky, 2005)
- Clasp (University of Potsdam, 2006)

HIPP

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Mathematical Description

- Haplotype: vector of sites, each site 0 or 1 Genotype: vector of sites, each site 0,1, or 2
- Two haplotypes h₁ and h₂ explain a genotype g if for every site j the following hold:

$$ambiguous \ site \begin{cases} \text{ if } g[j] = 2 \text{ then } h_1[j] = 0 \text{ and } h_2[j] = 1 \\ \text{ or } h_1[j] = 1 \text{ and } h_2[j] = 0 \end{cases}$$
$$resolved \ site \begin{cases} \text{ if } g[j] = 1 \text{ then } h_1[j] = 1 \text{ and } h_2[j] = 1 \\ \text{ if } g[j] = 0 \text{ then } h_1[j] = 0 \text{ and } h_2[j] = 0 \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

HIPP-DEC: Decision version of HIPP

Given a set *G* of *n* genotypes, and a positive integer k, decide whether there is a set *H* of at most k unique haplotypes such that each genotype in *G* is explained by two haplotypes in *H*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

An Example

An Example

k=5

H={01100,01000,10010,10001,00100} *G*={01200,10010,10022,02100}

Solving HIPP in ASP

Representing Genotypes and Haplotypes

Genotypes are described by atoms of the form amb(g, j)

- *amb*(*g*, *j*) ∈ X iff *g*[*j*] = 2
- $\neg amb(g,j) \in X \text{ iff } g[j] = 1$
- $amb(g,j), \neg amb(g,j) \notin X$ iff g[j] = 0
- Haplotypes are described by atoms of the form h(i, j)

(日) (日) (日) (日) (日) (日) (日)

• $h(i,j) \notin X$ iff i[j] = 0

Representing Genotypes and Haplotypes

Genotype 3	01200
10022	10010
is represented by the atoms:	02100 G
-amb(1,1). $amb(1,4)$. $amb(1,5)$.	
Haplotype 1	01100 01000
01100	10010
is represented by the atoms:	10011
	10000
h(1,2). h(1,3).	H

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 > ◆○ ◆

Assumptions and Constraints

- A1 *H* is a set that contains 2*n* haplotypes, *h*₁,..., *h*_{2n}, and
 A2 every genotype *g_i* in *G* is explained by two haplotypes, *h*_{2i} and *h*_{2i-1}, in *H*.
- C1 For every genotype g in G, for every ambiguous site j of g, the values of the j'th sites of these haplotypes are different.

(日) (日) (日) (日) (日) (日) (日)

- C2 For every genotype g in G, for every resolved site j of g, the values of the j'th site of these haplotypes are g[j].
- C3 There are at most k unique haplotypes in H.

Formulation

For every haplotype H and for every site j, a value is generated

{h(H,J)} :- haplo(H), site(J).

Formulation

C1 For every genotype g in G, for every ambiguous site j of g, the values of the j'th sites of these haplotypes are different.

- :- amb(G,J), h(2*G,J), h(2*G-1,J).
- :- amb(G,J), not h(2*G-1,J), not h(2*G,J).

(ロ) (同) (三) (三) (三) (三) (○) (○)

Formulation

C2 For every genotype g in G, for every resolved site j of g, the values of the j'th site of these haplotypes are equal to g[j].

- :- -amb(G, J), not h(2*G-1, J).
- :- -amb(G,J), not h(2*G,J).
- :- not -amb(G,J), not amb(G,J), h(2*G-1,J).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

:- not -amb(G,J), not amb(G,J), h(2*G,J).

Formulation

C3 There are at most k unique haplotypes in H.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Formulation

C3 There are at most *k* unique haplotypes in *H*. Different haplotypes:

Unique haplotypes:

```
unique(1).
unique(H) :- H-1{diffhapp(H1,H):haplo(H1)},
haplo(H), H>1.
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Formulation

C3 There are at most *k* unique haplotypes in *H*. Different haplotypes:

Unique haplotypes:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

C3:

:- k+1 {unique(H):haplo(H)}.

Haplo-ASP

HIPP instances: 334 instances (294 real, 40 artificial)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- abcd: 90
- ace: 90 (Angiotensin Converting Enzyme)
- ibd: 90 (Inflammatory Bowel Disease)
- hapmap: 24 (HapMap Project)
- uniform: 20
- nonuniform: 20
- Systems: Haplo-ASP, SHIPs, RPoly, Hapar
- Results

- HIPP instances: 334 instances (294 real, 40 artificial)
- Systems: Haplo-ASP, SHIPs, RPoly, Hapar
 - SHIPs based on SAT (Lynce&Marques-Silva, 2006)
 - RPoly

based on Pseudo-Boolean Optimization (Graca et al, 2007)

Hapar

based on a branch & bound algorithm (Wang&Xu, 2003)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Results

- HIPP instances: 334 instances (294 real, 40 artificial)
- Systems: Haplo-ASP, SHIPs, RPoly, Hapar
- Results
 - Haplo-ASP solved more number of problems compared to SHIPs and RPoly.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

RPoly is faster for many problems.

Group	# of problems	# of problems solved		
		SHIPs	Haplo-ASP	RPoly
hapmap	24	24	23	23
abcd	90	90	90	90
ace	90	90	90	90
ibd	90	78	89	88
uniform	20	20	20	20
non-uniform	20	20	20	20
Total	334	322	332	331

Variations of HIPP

Domain specific knowledge (e.g., observed patterns)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

site 2 of each haplotype is 1:

:- not h(H,2), haplo(H).

Variations of HIPP

Domain specific knowledge (e.g., observed patterns)

site 2 of each haplotype is 1:

- :- not h(H,2), haplo(H).
- Haplotype Inference with Present-Absent Genotype data (HIPAG)
 - Tested on 17 Killer cell Immunoglobulin-like Receptor (KIR) genes for Caucasian population

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Haplo-ASP: exact solution, 76.8% accuracy
- Haplo-IHP: approximation, 73.2% accuracy

Conclusion

- A novel formulation of HIPP and its variations
 - Genotypes with missing information
 - Present-absent genotype data
 - Haplotype patterns for some gene families
- New methods for haplotype inference problems
 - Lower/upper bound computation
 - Simplification of genotypes
 - Accuracy check
- Haplo-ASP: the only system that can solve HIPP and its variations
 - Solves more number of problems compared to SHIPs and RPoly.
 - Finds more accurate results compared to Haplo-IHP.