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ABSTRACT
�ere is an emerging consensus that time is an important indica-
tor of relevance for searching streams of social media posts. In
a process similar to pseudo-relevance feedback, the distribution
of document timestamps from the results of an initial query can
be leveraged to infer the distribution of relevant documents, for
example, using kernel density estimation. In this paper, we explore
an alternative approach to mining relevance signals directly from
the temporal statistics of query terms in the collection, without the
need to perform an initial retrieval. We propose two approaches:
a linear ranking model that combines features derived from tem-
poral collection statistics of query terms and a regression-based
method that a�empts to directly predict the distribution of relevant
documents from query term statistics. Experiments on standard
tweet test collections show that our proposed methods signi�cantly
outperform competitive baselines. Furthermore, studies of di�erent
feature combinations show the extent to which di�erent types of
temporal signals impact retrieval e�ectiveness.

1 INTRODUCTION
�ere is a large body of literature in information retrieval that
has established the importance of understanding and modeling the
temporal distribution of documents as well as queries for various in-
formation seeking tasks [5–9, 12, 16]. �is is particularly important
for searching rapidly-evolving, real-time social media streams such
as Twi�er, which is the focus of this work. Given an information
need expressed as a query, we wish to develop ranking models
that return relevant tweets. We refer to this problem as temporal
ranking to emphasize the need to model temporal aspects of the
information need as well as the document collection.

One successful approach to temporal ranking is to estimate the
distribution of relevant documents using the distribution of doc-
ument timestamps from the results of an initial query [8]. In the
same way that pseudo-relevance feedback uses the results of an
initial query to re�ne estimates of term distributions in relevant
documents, this class of techniques can be viewed as performing
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inference on the distribution of document timestamps. �e the-
oretical foundation of this approach lies in the temporal cluster
hypothesis [8], which is the observation that relevant documents
tend to cluster together in time. One e�ective implementation
of this idea is to use kernel density estimation (KDE) to infer a
“temporal prior” for a given information need.

In this work, we take a di�erent approach to estimate the distri-
bution of relevant documents: instead of relying on the results of
an initial query, we a�empt to exploit temporal signals embedded
in the distribution of the query terms themselves. We call these
query trends, which are generalizations of collection term statis-
tics (of query unigrams and bigrams) in the temporal dimension.
Speci�cally, we keep track of the number of occurrences of query
terms across a moving window over the document collection.

Consider an example that illustrates our intuition: the distribu-
tion of relevant documents (i.e., from human judgments) for topic
MB127 (“hagel nomination �libustered”) from the TREC 2013 Mi-
croblog Track is shown on the top in Figure 1. �e x axis denotes a
timeline, with units in days anchored at the query time on the right
edge. Of course, this distribution is not known at query time—it is
the target of our prediction. �e remaining rows in Figure 1 show
query trends, the distribution of query terms in the collection across
time, for the unigrams “�libustered”, “hagel”, “nomination”, and
the bigram “hagel nomination”. Informally, our problem can be
characterized as using query trends to predict the distribution of
relevant documents (i.e., the top row in Figure 1).

From this example, it is apparent that there are correlations be-
tween query trends and the distribution of relevant documents. Fur-
thermore, a key advantage of our approach over previous methods
is that it eliminates the need for an initial retrieval, since temporal
collection statistics can be compactly stored for e�cient lookup [20]
during query processing. From an e�ciency perspective, this means
that models based solely on query trends can be substantially faster
than those that require an initial retrieval.

In this paper, we explore two di�erent approaches to exploiting
query trends:

• A linear ranking model that combines features based on the
temporal collection statistics of query unigrams and bigrams,
their entropies, other related signals.

• A regression-based method that a�empts to directly predict the
distribution of relevant documents from unigram and bigram
query trends.

�ese two approaches are further combined in an ensemble model,
which additionally includes features derived from previous work
based on kernel density estimation.
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(top row, in red) and unigram/bigram query trends (remain-
ing rows, in blue) for MB127 (“hagel nomination �libus-
tered”) from the TREC 2013 Microblog Track. Informally,
our problem can be characterized as using the blue distribu-
tions to predict the red distribution.

�emain contribution of this work is the exploration of temporal
collection statistics of query terms (what we call query trends) for
temporal ranking. To our knowledge, our focus on such query term
statistics is novel. Experimental evaluations on standard tweet test
collections show that our proposed methods are signi�cantly more
e�ective than competitive baselines. Furthermore, detailed studies
of di�erent feature combinations show the extent to which di�erent
types of temporal signals impact retrieval e�ectiveness.

2 BACKGROUND AND RELATEDWORK
We begin with an overview of related work on modeling temporal
dynamics for document ranking and related tasks. �en we provide
some technical details about recent work on temporal ranking to
set up comparisons with our proposed methods.

2.1 Temporal Information Retrieval
�ere is a long thread of research exploring the role of temporal
signals in search [5–9, 12, 17, 20], and it is well established that
for certain tasks, be�er modeling of the temporal characteristics of
queries and documents can lead to higher retrieval e�ectiveness.

For example, Jones and Diaz [10] studied the temporal pro�les
of queries, classifying queries as atemporal, temporally ambiguous,
or temporally unambiguous. �ey showed that the temporal distri-
bution of retrieved documents can provide an additional source of
evidence to improve rankings. Building on this, Li and Cro� [12] in-
troduced recency priors that favor more-recent documents. Dakka
et al. [5] proposed an approach to temporal modeling based on mov-
ing windows to integrate query-speci�c temporal evidence with
lexical evidence. Efron et al. [7] presented several language mod-
eling variants that incorporate query-speci�c temporal evidence.
�e most direct point of comparison to our work (as discussed in
the introduction) is the use of non-parametric density estimation to
infer the temporal distribution of relevant documents from an ini-
tial list of retrieved documents [8, 19]. Most recently, Rao et al. [17]
proposed an end-to-end neural ranking model to integrate lexical
and temporal signals, which has shown promising improvements
over previous approaches.

�ere have been several other studies of time-based pseudo
relevance feedback. Keikha et al. [11] represented queries and doc-
uments with their normalized term frequencies in the time dimen-
sion and used a time-based similarity metric to measure relevance.
Craveiro et al. [4] exploited the temporal relationship between
words for query expansion. Choi and Cro� [3] presented a method
to select time periods for expansion based on users’ behaviors (i.e.,
retweets). Rao et al. [18] proposed a continuous hidden Markov
model to identify temporal burst states in order to select be�er
query expansion terms.

In addition to ranking, modeling temporal signals has also been
shown to bene�t related tasks such as behavior prediction [16],
time-sensitive query auto-completion [21], and real-time event
detection [1, 2]. For example, Radinsky et al. [16] built predictive
models to learn query dynamics from historical user data.

One important di�erence between the above cited papers and our
work lies in the source of the temporal signals. Temporal evidence
in most previous studies comes either from behavior log data or
from analyzing a candidate set of documents. We extend these
approaches by incorporating the temporal distribution of collection
term statistics as another source of temporal signal.

2.2 Temporal Modeling of Pseudo Trends
Consider the query-likelihood approach in the language modeling
framework [15]: documents are ranked by P (D |Q ) ∝ P (Q |D)P (D),
where P (Q |D) is the likelihood that the language model that gen-
erated document D would also generate query Q , and P (D) is the
prior distribution. Below, we discuss several ways to incorporate
temporal signals within this general framework.
Recency Prior: One of the simplest way to let time in�uence
ranking was proposed by Li and Cro� [12], in the form of a doc-
ument prior that favors recently published documents. If TD is
the timestamp associated with document D, P (D) could take the
form of an exponential distribution (with rate parameter λ ≥ 0):
P (D) = λe−λTD . Although previous studies have shown that re-
cency priors increase overall e�ectiveness, they are by de�nition
query-independent. �is approach, however, is problematic be-
cause we know that dependencies between time and relevance vary
from query to query [10].
MovingWindow (WIN):Dakka et al. [5] proposed a query-speci�c
way to combine lexical and temporal evidence in the language
modeling framework by separating the two components:WD , the
document’s content and TD , the document’s timestamp. �is leads
to the following derivation:

P (D |Q ) = P (WD ,TD |Q ) (1)
= P (TD |WD ,Q )P (WD |Q ) (2)
∼ P (TD |Q )P (WD |Q ) (3)

where the last step follows from Eq. (2) if we assume independence
between content and temporal evidence. More generally, we take
the view that there are two sources of evidence we need to integrate
in document ranking: P (R |WD ,Q ), based on document content, and
P (R |TD ,Q ), based on temporal evidence.

�e content relevance term P (R |WD ,Q ) can be modeled through
a standard query-likelihood model [15]. �e temporal relevance



term can be estimated through the temporal distribution of doc-
uments retrieved by query Q . Since this temporal distribution is
estimated from the initial retrieved documents, we call this the
pseudo trend approach, in contrast with our query trend methods.
To estimate the pseudo trend, Dakka et al. [5] adopted a moving
window technique to group retrieved document into discrete bins
based on the publication time of the documents.
Kernel Density Estimation (KDE): Efron et al. [8] extended the
pseudo trend approach by inferring a continuous density function
using kernel density estimation. As discussed in the introduction,
the theoretical motivation for modeling the distribution of initial
retrieved documents is what Efron et al. [8] call the temporal cluster
hypothesis: that relevant documents tend to cluster together in time,
in the same way that van Rijsbergen’s “classic” cluster hypothesis
suggests that documents relevant to a queryQ cluster in term space.
An example of such cluster distributions can be found in the �rst
row of Figure 1.

In the KDE approach, each document is modeled as a Gaussian
kernel estimator and associated with a weight to denote its im-
portance. Efron et al. proposed four weighting schemas: uniform,
score-based, rank-based, and oracle. Uniform weights assume that
each document contributes equally, score-based weights are derived
from normalized retrieval scores, and rank-based weights are com-
puted from an exponential decay function of the rank positions of
the documents. Finally, oracle weights come from performing KDE
directly on the relevant documents (i.e., from human judgments).
Of course, we do not know the distribution of relevant documents
at query time, but the oracle weights quantify the e�ectiveness
upper bound of KDE-based techniques.

Once we obtain an estimate of the pseudo trend, we can then
compute the temporal relevance term for each document given its
publication timestamp. �is feature is further integrated with the
lexical relevance term in a simple log-linear model as follows:

log Pα (R |D,Q ) = Zα + (1 − α ) log P (R |WD ,Q )

+ α log P (R |TD ,Q )
(4)

where Zα is a normalization constant. �ese scores are then used
to rerank documents from the initial query.

3 APPROACH
3.1 Temporal Modeling of�ery Trends
Instead of a�empting to estimate the distribution of relevant docu-
ments from the results of an initial query—what we’ve called pseudo
trend approaches in the previous section—we adopt the alterna-
tive approach of directly leveraging the temporal distribution of
query term statistics, which we call query trends. �is approach
has the obvious advantage of not requiring an initial retrieval; tem-
poral term statistics can be gathered and e�ciently compressed for
low-latency lookup [20] as part of the indexing process.

Intuitively, we would expect to �nd more relevant documents in
temporal intervals where the query terms are bursty. We illustrate
this in Figure 1 for topic MB127 (“hagel nomination �libustered”)
from the TREC 2013 Microblog Track, as described in the intro-
duction. �e top row shows the actual distribution of relevant
documents, which is the target of our prediction and of course
not known at query time. �e remaining rows show the query

trends of the unigrams “�libustered”, “hagel”, “nomination”, and
the bigram “hagel nomination”.1 As we might expect, there are
correspondences between peaks in the query trends and the ac-
tual distribution of relevant documents—for example, the few days
when the unigram “�libustered” occurs most frequently are also
when most of the relevant documents are clustered.

Of course, not all query trends are created equal. In the example
in Figure 1, we see that the distribution of the unigram “nomination”
is less predictive of the distribution of relevant documents. Overall,
we �nd that less bursty terms are less useful, a notion we can for-
mally capture by computing the entropy of the distribution. Given
the counts of a particular unigram or bigram t = {c1, c2, ..., cn }
across various time intervals (e.g., days), its entropy can be com-
puted as follows:

Entropy(t ) = −
∑
i

ci
C

log ci
C

(5)

where C = ∑
i ci . Lower entropy indicates a less uniform distribu-

tion and thus more bursty behavior.
From the query trends we can derive a family of features for a

learning-to-rank model. �ere is, however, one additional compli-
cation we need to address: queries vary in length, which means that
di�erent queries have di�erent numbers of unigram and bigram
query trends. �is is problematic since the linear feature-based
model we use assumes a �xed number of features. We address this
issue in a more principled manner in the next section, but here
we introduce features based on the unigram and bigram with the
lowest entropy (thus, the largest burstiness). We call these the
representative unigram and bigram query trend, respectively.

From the basic concepts introduced above, we propose the fol-
lowing features:
• �e relative entropy of the representative unigram. �e relative

entropy re�ects the burstiness of a unigram query trend, com-
puted as the absolute di�erence between the unigram entropy
and the maximum entropy. �e maximum entropy is computed
by assuming a uniform distribution over term counts. Note that
queries can have di�erent timespans (because each is associated
with a di�erent query time), and thus the maximum entropy is
query-dependent; computing relative entropy normalizes for the
e�ects of di�erent query timespans.

• �e relative entropy of the representative bigram. �is feature is
computed in exactly the same manner as described above, except
on bigram query trends.

• Estimated density at the document’s timestamp from the query
trend of the representative unigram. �is feature is document-
dependent. First, we perform kernel density estimation over the
representative query unigram. �en, for the particular document
that we are scoring, we compute the estimated density at the
document’s timestamp.

• Estimated density at the document’s timestamp from the query
trend of the representative bigram. �is is similar to above,
except with bigrams.

In Section 3.3, we detail how these features are integrated into the
�nal ranking model.

1�e other query bigram “nomination �libustered” is ignored in this analysis because
it does not occur with su�cient frequency (based on a simple threshold).



Description
Nq number of queries
Np number of sample points per query
N Nq · Np , number of sample points across all queries
Nu max. number of unigrams per query (default 10)
Nb max. number of bigrams per query (default 10)
Yi Np × 1, densities computed from relevant docs for query i
Y N × 1, concatenation of densities (Y1, ...,Yi , ...,YNq )

U N × Nu , densities computed from unigram trends
B N × Nb , densities computed from bigram trends
Eu Nq × Nu , normalized relative unigram entropies
Eb Nq × Nb , normalized relative bigram entropies
R Nq × 1, ratio of max unigram to bigram entropy
wu
i Nu × 1, weight vector for unigrams of query i

wb
i Nb × 1, weight vector for bigrams of query i

Table 1: Notation Table.

3.2 Regression on�ery Trends
�e above feature engineering approach tries to predict the distri-
bution of relevant documents via a single representative unigram
or bigram query trend. An alternative is to integrate evidence from
all unigram and bigram query trends. Such an approach, how-
ever, can be a double-edged sword. On the one hand, we observe
that for many topics, the distribution of relevant documents has
many peaks. In these cases, it is unlikely that a single unigram
or bigram query trend is su�cient to reconstruct the reference
distribution. Such cases would seemingly bene�t from integrating
multiple sources of evidence to overcome the limited signal from
any individual query trend. On the other hand, we see that some
query trends have low or even negative correlations with the actual
distribution of relevant documents (e.g., query terms that aren’t
important to the information need). In these cases, the query trends
merely introduce noise into the prediction. How to balance these
two factors is a question we explore.

�e basic idea behind our regression-based method is to predict
the actual query distribution by integrating all unigram and bigram
query trends. When a query arrives, we can apply the entropy
computations and kernel density estimations on all query terms.
Suppose we have computed an entropy of et and a kernel density
function of ft for each term t . We can then a�empt to �t the actual
density of relevant documents Y (which is obtained by KDE on the
distribution of relevant documents) as follows:

Y ≈
∑
t
wt ft (6)

where weightwt is a function of entropy et and our goal is to learn
this mapping function.

Note that approximating a continuous function from multiple
kernel density functions is di�cult, so instead we sample the dis-
tributions at �xed intervals. Now this model transforms into a
non-linear regression problem. Given the unigram entropies Eu ,
bigram entropies Eb , unigram densitiesU at the sample points, and
bigram densities B at the sample points, our task is to predict the
densities Y at the same points. For more details about symbols used
in this section, please refer to Table 1.

Two questions need to be answered in this non-linear regres-
sion problem. First, how to determine the importance of each term
in contributing to the estimated density? Based on our observa-
tions, we �nd that terms with larger normalized entropies, i.e., a
larger di�erence between its absolute entropy and the entropy of
a uniform distribution, are more likely to re�ect the true distribu-
tion of relevant documents. �erefore, we formulate the mapping
from entropy to weights via an exponential increasing function,
wt = exp(θ · et ) − 1, where et is the normalized entropy of term t
with its value ranging from zero to one. A term with zero normal-
ized entropy would have zero weight, and thus can be ignored. �e
parameter θ controls the exponential rate. We use α for unigrams
and β for bigrams as θ below.

�e second question is how to di�erentiate contributions of
unigrams from those of bigrams. For some queries, unigram query
trends are more predictive, while for others, bigram trends are
more predictive. How to evaluate their contributions for di�erent
queries is one key aspect of our model. To this end, for each query,
we assign a weight ui ∈ [0, 1] to denote its unigram contribution;
the corresponding bigram weight would be 1 − ui . We link the
normalized unigram weight ui to the entropy ratio Ri (which is
the ratio of the maximum normalized unigram to bigram entropy
for query i) by observing correlations between these two factors in
training data. �is mapping is normalized by a logistic function:

ui = logistic(Ri ,γ ) =
1

1 + exp(−γRi )
(7)

where

Ri =
maxu Eui

maxb Ebi
− 1 (8)

and γ is a parameter to be estimated.
Intuitively, Ri greater than zero implies that the maximum nor-

malized unigram entropy is larger than the maximum normalized
bigram entropy. In this case, the logistic function would assign a
unigram weight ui > 0.5, and so unigrams would contribute more
to the density estimate than bigrams. Finally, we desire that the
integrated densities approximate the actual query density Y for
each query i:

Yi ≈ uiUiw
u
i + (1 − ui )Biwb

i (9)
wherewu

i andwb
i are weight vectors of unigrams and bigrams of

query i , respectively. Overall, we sum up the square loss between
ground truth densities Yi and the estimated densities Ŷi over all
queries, plus some regularization terms. �e �nal loss function L is
formulated as follows:

L =

Nq∑
i=1
‖Yi − (uiUi (e

αEui − 1)T + (1 − ui )Bi (eβE
b
i − 1)T )‖2

+ λ(α2 + β2 + γ 2)

(10)

where Ri and ui are de�ned above.
Note that this model has three parameters (α , β , and γ ) to be

estimated, which are the weights of the entropy mapping function
and the logistic function. Since the loss L is di�erentiable with
respect to the three parameters, we can optimize the parameters
using gradient-based methods. By constituting the logistic function
into the overall loss function L, the gradients with respect to the
parameters are computed as follows:



Description
1 QL score

Density estimate from:
2 KDE over initial retrieved docs (uniform)
3 KDE over initial retrieved docs (score-based)
4 KDE over initial retrieved docs (rank-based)
5 KDE over relevant docs (oracle)

Section 3.1
6 Relative entropy of representative unigram
7 Relative entropy of representative bigram

Density estimate from:
8 KDE of representative unigram distribution
9 KDE of representative bigram distribution

Section 3.2
10 Density estimate from query trend regression model

Table 2: Summary of all features.

term = 2 ·
(
Yi − (uiUi (e

αEui − 1)T + (1 − ui )Bi (eβE
b
i − 1)T )

)
∂L

∂α
= −

Nq∑
i=1

(
ui · termT ·Ui · (E

u
i · e

αEui )T
)
+ 2λα

∂L

∂β
= −

Nq∑
i=1

(
(1 − ui ) · termT · Bi · (E

b
i · e

βEbi )T
)
+ 2λβ

∂L

∂γ
=

Nq∑
i=1

*
,
termT ·

(
−Ui · (e

αEui − 1)T + Bi · (eβE
b
i − 1)T

)
· Ri logistic(Ri ,γ ) · (1 − logistic(Ri ,γ ))+

-
+ 2λγ

A�er solving the objective, we learn two mappings: an exponential
mapping from entropy to term weight wt = exp(θe ) − 1, and a
logistic mapping from ratio to unigram weight u = logistic(R,γ ).
We are then able to estimate densities for queries in the test data:

Ŷi = uiUiw
u
i + (1 − ui )Biwb

i (11)

Finally, the estimated density Ŷi serves as a feature in the �nal
evidence combination approach (more details below).

3.3 Pulling Everything Together
To recap, we have introduced three families of features for modeling
temporal evidence: KDE applied to initial retrieved documents [8]
(Section 2.2), features derived from query trends (Section 3.1), and
density estimates from a query trend regression model (Section 3.2).
In total, we have ten features, including query-likelihood for cap-
turing content relevance, which are summarized in Table 2.

As previously discussed, we integrate all these features in a
linear feature-based ranking model [13]. �e general form of such
a model, extended from Eq. (4), is as follows:

Sd =
∑
i
αi · Fi (d,q) s.t.

∑
i
αi = 1. (12)

Naturally, we would like to understand the relative contributions
of each type of feature, but it does not make sense to exhaustively

Method Features
QL 1
IRDu 1, 2
IRDs 1, 3
IRDr 1, 4
QT 1, 6–9
QT + IRDr 1, 4, 6–9
Reg 1, 10
Reg + IRDr 1, 4, 10
Oracle 1, 5

Table 3: Summary of di�erent feature combinations.

explore all possible combinations. �us, we took the middle road
and explored a number of interesting feature set combinations,
summarized in Table 3:
• Di�erent weighting schemes for KDE applied to the initial re-

trieved documents. �ese are the same experimental conditions
in Efron et al. [8] and Rao et al. [19]. For convenience, these
models are referred to as IRDu (uniform weights), IRDs (score-
based weights), and IRDr (rank-based weights). Previous experi-
ments [19] show that rank-based weights are the most e�ective
overall, and thus for subsequent con�gurations we only use
rank-based weights.

• �ery trend features as a group (QT) and query trend features
combined with KDE on the initial retrieved documents with
rank-based weights (QT + IRDr ).

• �ery trend regression (Reg) and query trend regression com-
bined with KDE on the initial retrieved documents with rank-
based weights (Reg + IRDr ).

Note that use of the IRDr features requires an initial retrieval, and
thus we lose the e�ciency advantage of feature combinations that
use only query trends.

4 EVALUATION
4.1 Experimental Setup
We evaluated our proposed methods on Twi�er test collections
from the TREC 2013 and 2014 Microblog Tracks (60 topics and 55
topics, respectively). Both use the Tweets2013 collection, which
consists of approximately 243 million tweets crawled from Twi�er’s
public sample stream between February 1 and March 31, 2013. NIST
assessors provided relevance judgments on a three-point scale (“not
relevant”, “relevant”, “highly relevant”) but in this work we treated
both higher grades as “relevant”. We removed all retweets in our
experiments since they are by de�nition not relevant according to
the assessment guidelines.

To rule out the e�ects of di�erent preprocessing strategies during
collection preparation (i.e., stemming, stopword removal, etc.), we
used the open-source implementations of tweet search provided
by the TREC Microblog API2 to retrieve up to 1000 tweets per
topic using query likelihood (QL) for scoring. On this candidate
set of documents we applied our various methods for reranking.
Following the TREC Microblog Tracks, we used average precision
(AP) and precision at 30 (P30) to measure e�ectiveness.

2h�ps://github.com/lintool/twi�er-tools

https://github.com/lintool/twitter-tools


Odd-Even Even-Odd Cross
ID Method AP P30 AP P30 AP P30
1 �ery Likelihood (QL) [15] 0.271 0.475 0.357 0.564 0.315 0.520
2 Recency prior [12] 0.277 0.4991 0.359 0.574 0.313 0.5341,4
3 Moving Window (WIN) [5] 0.2831 0.4871 0.358 0.567 0.319 0.527
4

KDE [8]
IRDu 0.273 0.481 0.350 0.566 0.308 0.515

5 IRDs 0.274 0.4871 0.353 0.5771 0.314 0.5301,4
6 IRDr 0.2881,4,5 0.5171,3,4,5 0.360 0.5881,2,3,4 0.3271,2,4,5 0.5521,2,3,4,5
7 QT 0.278 0.4921,4 0.3671,4,5 0.5871,2,3,4 0.320 0.5301,4
8 �is Reg 0.276 0.4881 0.3661,4,5 0.5761 0.3291,2,4,5 0.5351,4
9 work QT-IRDr 0.2901,2,4,5 0.5221,2,3,4,5 0.3701,2,3,4,5 0.5981,2,3,4,5 0.3281,2,4,5 0.5651,2,3,4,5
10 Reg-IRDr 0.3021,2,3,4,5,6 0.5351,2,3,4,5 0.3681,2,3,4,5 0.5961,2,3,4,5 0.3321,2,3,4,5 0.5661,2,3,4,5
11 Oracle 0.3141,2,3,4,5,6 0.5361,2,3,4,5,6 0.3821,2,3,4,5,6 0.6361,2,3,4,5,6 0.3491,2,3,4,5,6 0.5861,2,3,4,5,6

Table 4: Results from the TREC 2013/14 Microblog Track test collections: “Odd-Even” represents training on odd topics and
testing on even topics; “Even-Odd” represents the opposite; “Cross” represents four-fold cross validation. Superscripts indicate
the row indexes from which the metric di�erences are statistically signi�cant (p < 0.05).

In our experiments, we examined four di�erent ways of spli�ing
the test collections into training and test sets:
• First, we trained on odd-numbered topics from the TREC 2013

and 2014 Microblog Tracks (57 topics) and evaluated on even-
numbered topics (58 topics).

• Second, we swapped the training/test splits: training on even-
numbered topics and testing on odd-numbered topics.

• �ird, we performed four-fold cross validation across all topics.
• Finally, we performed a series of trials in which we randomly

selected half the topics for training and used the remaining for
testing. Results across multiple trials are aggregated.

We used coordinate ascent in RankLib3 to learn the parameters in
Eq. (12), optimizing and evaluating on the same metric.

Several baselines were used as points of comparison to our pro-
posed methods. �ery likelihood (QL) [15] was used as a lexical
baseline. Temporal baselines included:
• Li and Cro�’s recency prior method [12].
• �e moving window method of Dakka et al. [5].
• �e kernel density estimation (KDE) methods of Efron et al. [8]
with uniform weights (IRDu ), score-based weights (IRDs ), and
rank-based weights (IRDr ).

In addition, we also include the KDE oracle as a reference upper
bound. In this condition, we apply kernel density estimation over
the distribution of the relevant documents based on human assessor
judgments. �is characterizes how much temporal signal can be
extracted to improve relevance ranking, at least with this class of
density estimation techniques.

To build the query trend features, we needed to precompute col-
lection frequencies across time windows for the entire vocabulary.
We aggregated term statistics and worked with query trends at the
day granularity—that is, each term’s trend is represented by an
integer array of size 59, where each integer denotes the collection
frequency for a single day. By discarding terms with a collection
frequency lower than �ve, we extracted a total of 2.3 million uni-
grams and 23.1 million bigrams from the Tweets2013 collection.
�ese term statistics are compressed with PForDelta [20], down to

3h�ps://sourceforge.net/p/lemur/wiki/RankLib/

a size of 0.26 GB for unigrams and 2.2 GB for bigrams. �e aver-
age decoding time of the compressed term statistics is 5.1 µs per
unigram and 5.8 µs per bigram on a commodity server. Due to the
e�cient compression, we are able to load the term statistics into
memory to estimate query trend features very quickly.

4.2 E�ectiveness of Temporal Models
Results of our experiments are summarized in Table 4. Each row
denotes an experimental condition (numbered for convenience):
the third column “Odd-Even” represents training on odd-numbered
topics and testing on even-numbered topics; “Even-Odd” represents
the opposite; “Cross” represents four-fold cross validation. �e best
result for each se�ing is in bold. We compared each method against
all lexical and temporal baselines for statistical signi�cance using
Fisher’s two-sided, paired randomization test [22]. Superscripts
indicate the row indexes from which the metric di�erences are
statistically signi�cant (p < 0.05).

First, we observe that most temporal baselines (Recency, WIN,
IRDs , and IRDr ) outperform the lexical baseline in terms of P30,
but generally not in terms of AP, suggesting that they are be�er
suited to improving early precision. Among the temporal baselines,
IRDu performs consistently the worst and IRDr outperforms the
rest. Note that while IRDs and IRDr both place more weight on top-
ranked documents, the gap in e�ectiveness comes from the fact that
the retrieved scores of the top-ranked documents are generally quite
similar. �us, score normalization does not introduce su�cient bias
to help us distinguish the high-ranking documents.

Second, we see that our query trend methods (QT and Reg)
signi�cantly outperform the lexical baselines in most conditions,
suggesting that signals captured from temporal collection statistics
are bene�cial to relevance ranking. While these “vanilla” query
trend methods alone do not signi�cantly improve over the temporal
baselines, combining them with the pseudo trend methods (as in
QT+IRDr and Reg+IRDr ) yields a boost in e�ectiveness. �ese
ensemble methods are consistently more e�ective than the best-
performing temporal baseline IRDr . �ey also come close to the
upper bound (oracle) in some conditions, especially for P30. For the
Reg+IRDr model, features 1, 4, and 10 (query likelihood, IRDr , Reg

https://sourceforge.net/p/lemur/wiki/RankLib/


(a) AP on TREC 2013/14 (b) P30 on TREC 2013/14

Figure 2: Box-and-whiskers plots summarizing howmuch each temporalmodel outperforms theQL baseline across 30 random
trials (half for training, half for testing) on the TREC 2013/14 Microblog Track test collections.

features) received weights 0.84, 0.10, and 0.06 in the Odd-Even split,
respectively, which shows that the di�erent sources of temporal
evidence are complementary.

In the above experiments, we noticed variance in e�ectiveness
under di�erent conditions, depending on how the test collections
are split into training/test sets. Our random split experiments were
designed to factor out noise from this issue. In each trial, we trained
on half of the topics (randomly selected) and evaluated on the other
half. We then computed the e�ectiveness di�erences between each
technique and the QL baseline. �ese di�erences, collected over
30 trials, are summarized in box-and-whiskers plots in Figure 2 for
all temporal approaches. We show the distribution of e�ectiveness
di�erences in terms of AP (le�) and P30 (right). Each box represents
the span between the �rst and third quartiles, with a horizontal
line at the median value. Whiskers extend from the ends of each
box to the most distant point whose value lies within 1.5 times the
interquartile range. Points that lie outside these limits are drawn
individually. �ese results capture the overall e�ectiveness of each
method, be�er than metrics from any single arbitrary split.

From Figure 2, it is clear that IRDr outperforms all baselines as
well as the raw query trend approaches (QT and Reg). �e ensemble
approaches (QT+IRDr and Reg+IRDr ) yield further improvement
over IRDr , with Reg+IRDr coming out higher. Although we did
not observe a statistically signi�cant di�erence between our best
ensemble method (Reg+IRDr ) and the best baseline (IRDr ) in our
previous experiments, the box plots show that the e�ectiveness
gains of Reg+IRDr are more consistent, �is is especially true for
P30 (right side of Figure 2): the median of Reg+IRDr is above 0.05
whereas IRDr has a median below 0.04. Another observation is that
the bo�om of the Reg+IRDr box is still above the top of the IRDr
box, meaning that the top 75% of Reg+IRDr runs were be�er than
the bo�om 75% of IRDr runs. Although it is di�cult to de�nitively
conclude statistical signi�cance from these experiments, quanti-
fying the variance associated with arbitrary training/test splits
provides additional evidence supporting the e�ectiveness of our
proposed methods.

Figure 3: Per-topic improvements of the ensemble model
Reg+IRDr compared to the QL baseline and IRDr method.

4.3 Per-topic Analysis
In order to gain a be�er understanding of how di�erent tempo-
ral features contribute to e�ectiveness in temporal ranking, we
performed a topic-by-topic analysis along with an in-depth exam-
ination of the various component distributions. Due to a lack of
space, here we present only results comparing the best-performing
ensemble model (Reg+IRDr ) against the lexical baseline QL and the
temporal baseline IRDr . In Figure 3, we show per-topic di�erences
as a bar chart, measured in terms of P30 on the even topics from
the TREC 2013/14 Microblog Track test collections.

From the top bar chart in Figure 3, we can see that the ensem-
ble model (Reg+IRDr ) improves over the QL baseline for most
of the topics; there are only a few topics where e�ectiveness de-
creases (and not by much). From the bo�om bar chart, we see
that Reg+IRDr improves over IRDr alone, which con�rms that the
regression model contributes additional signal over kernel density
estimation alone.

In Figure 4 we take a closer look at the best-performing topic,
MB144 “downtown abbey actor turnover”. �e top row shows the
distribution of relevant documents (in red), the second row shows
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turnover”) from the TREC 2013 Microblog Track. Rows
show: distribution of relevant documents (red), pseudo
trend based on KDE (green), and query trends (blue).

the distribution inferred from the pseudo trend using IRDr (in
green), and the remaining rows show the query trends (in blue).
Clearly, we can see that the distribution of relevant documents
has two peaks, one around days 3–5 and the other around days
14–16. We can observe that the pseudo trend from IRDr is able to
capture the burst of relevant documents at days 3–5. We also see
a strong correlation between the query trends (unigrams “down-
town”, “abbey”, and the bigram “downtown abbey”) and the ground
truth relevance distribution at days 14–16. �us, the combination
of pseudo trend and query trend features allows us to nicely re-
cover this multimodal distribution, which is a�rmed by the large
improvements for this topic compared to both QL and IRDr . In
addition, the regression model is able to smooth out noise from
non-important terms “actor” and “turnover”. �is observation is
con�rmed in many other topics, like MB192 “whooping cough epi-
demic” and MB204 “sotomayor, prosecutor, racial comment”, where
we also observe strong correlations between query trends and the
ground truth relevance distributions.

We also examined topics where e�ectiveness decreased with
respect to IRDr , such as MB116 “Chinese computer a�acks” and
MB118 “Israel and Turkey reconcile”. We found that the representa-
tive query trends (the unigram “Chinese” for MB116 and the bigram
“and Turkey” for MB118) are very di�erent from the distribution of
relevant documents, and thus our methods infer an inaccurate dis-
tribution. No approach is perfect, but overall our per-topic analysis
a�rms the e�ectiveness of our query trend methods.

5 CONCLUSION
�ite obviously, the temporal distribution of relevant documents
provides an important signal for temporal ranking. As an alterna-
tive to previous pseudo trend methods that analyze the results of
an initial query to infer this distribution, we propose query trend
methods that a�empt to make predictions directly from the tempo-
ral collection statistics of query terms. Experiments show that these
sources of evidence are complementary, and the regression method

appears to be more e�ective than the feature-based approach. Al-
though query trend methods alone, which do not require an initial
retrieval, improve over a lexical baseline, combining query trends
with pseudo trends yields the best results. �is ensemble approach,
however, does require an initial retrieval, which negates the per-
formance advantages of query trend methods. Costly approaches
that involve actually searching the collection appear to provide
temporal signals that we currently cannot obtain from the temporal
collection statistics of query terms alone.

6 ACKNOWLEDGMENTS
�is work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada, with additional contributions
from the U.S. National Science Foundation under CNS-1405688.
Any �ndings, conclusions, or recommendations expressed do not
necessarily re�ect the views of the sponsors.

REFERENCES
[1] Chao Zhang, Liyuan Liu, Dongming Lei, �an Yuan, Honglei Zhuang, Tim

Hanra�y, and Jiawei Han. 2017. TrioVecEvent: Embedding-Based Online Local
Event Detection in Geo-Tagged Tweet Streams. In KDD. 595–604.

[2] Chao Zhang, Guangyu Zhou, �an Yuan, Honglei Zhuang, Yu Zheng, Lance
Kaplan, Shaowen Wang, and Jiawei Han. 2016. GeoBurst: Real-Time Local Event
Detection in Geo-Tagged Tweet Streams. In SIGIR. 513–522.

[3] Jaeho Choi and W. Bruce Cro�. 2012. Temporal Models for Microblogs. In CIKM.
2491–2494.

[4] Olga Craveiro, Joaquim Macedo, and Henrique Madeira. 2014. �ery Expansion
with Temporal Segmented Texts. In ECIR. 612–617.

[5] Wisam Dakka, Luis Gravano, and Panagiotis G. Ipeirotis. 2012. Answering
General Time-Sensitive�eries. TKDE 24, 2 (2012), 220–235.

[6] Anlei Dong, Ruiqiang Zhang, Pranam Kolari, Jing Bai, Fernando Diaz, Yi Chang,
Zhaohui Zheng, and Hongyuan Zha. 2010. Time is of the Essence: Improving
Recency Ranking Using Twi�er Data. InWWW. 331–340.

[7] Miles Efron and Gene Golovchinsky. 2011. Estimation Methods for Ranking
Recent Information. In SIGIR. 495–504.

[8] Miles Efron, Jimmy Lin, Jiyin He, and Arjen de Vries. 2014. Temporal Feedback
for Tweet Search with Non-Parametric Density Estimation. In SIGIR. 33–42.

[9] Jonathan L. Elsas and Susan T. Dumais. 2010. Leveraging Temporal Dynamics of
Document Content in Relevance Ranking. In WSDM. 1–10.

[10] Rosie Jones and Fernando Diaz. 2007. Temporal Pro�les of �eries. TOIS 25, 3
(2007), Article 14.

[11] Mostafa Keikha, Shima Gerani, and Fabio Crestani. 2011. TEMPER: A Temporal
Relevance Feedback Method. In ECIR. 436–447.

[12] Xiaoyan Li and W. Bruce Cro�. 2003. Time-Based Language Models. In CIKM.
469–475.

[13] Donald Metzler and W. Bruce Cro�. 2007. Linear Feature-Based Models for
Information Retrieval. Information Retrieval 10, 3 (2007), 257–274.

[14] Gilad Mishne, Je� Dalton, Zhenghua Li, Aneesh Sharma, and Jimmy Lin. 2012.
Fast Data in the Era of Big Data: Twi�er’s Real-Time Related �ery Suggestion
Architecture. In SIGMOD. 1147–1157.

[15] Jay M. Ponte and W. Bruce Cro�. 1998. A Language Modeling Approach to
Information Retrieval. In SIGIR. 275–281.

[16] Kira Radinsky, Krysta Svore, Susan Dumais, Jaime Teevan, Alex Bocharov, and
Eric Horvitz. 2012. Modeling and Predicting Behavioral Dynamics on the Web.
InWWW. 599–608.

[17] Jinfeng Rao, Hua He, Haotian Zhang, Ferhan Ture, Royal Sequiera, Salman
Mohammed, and Jimmy Lin. 2017. Integrating Lexical and Temporal Signals in
Neural Ranking Models for Social Media Search. In SIGIR Workshop on Neural
Information Retrieval (Neu-IR).

[18] Jinfeng Rao and Jimmy Lin. 2016. Temporal�ery Expansion Using a Continuous
Hidden Markov Model. In ICITR. 295–298.

[19] Jinfeng Rao, Jimmy Lin, and Miles Efron. 2015. Reproducible Experiments on
Lexical and Temporal Feedback for Tweet Search. In ECIR. 755–767.

[20] Jinfeng Rao, Xing Niu, and Jimmy Lin. 2016. Compressing and Decoding Term
Statistics Time Series. In ECIR. 675–681.

[21] Milad Shokouhi and Kira Radinsky. 2012. Time-Sensitive �ery Auto-
Completion. In SIGIR. 601–610.

[22] Mark D. Smucker, James Allan, and Ben Cartere�e. 2007. A Comparison of
Statistical Signi�cance Tests for Information Retrieval Evaluation. In CIKM. 623–
632.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Temporal Information Retrieval
	2.2 Temporal Modeling of Pseudo Trends

	3 Approach
	3.1 Temporal Modeling of Query Trends
	3.2 Regression on Query Trends
	3.3 Pulling Everything Together

	4 Evaluation
	4.1 Experimental Setup
	4.2 Effectiveness of Temporal Models
	4.3 Per-topic Analysis

	5 Conclusion
	6 Acknowledgments
	References

